ADVERTISEMENT
  • Trang chủ
  • Tin Tức
  • Liên hệ
Thứ bảy, Tháng mười một 23, 2024
Tin Tức Giáo Dục Học Tập Tiny
No Result
View All Result
  • Giáo Án
  • Học Tập
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Sách Tham Khảo
    • Sách Tham Khảo Lớp 1
    • Sách Tham Khảo Lớp 2
    • Sách Tham Khảo Lớp 3
    • Sách Tham Khảo Lớp 4
    • Sách Tham Khảo Lớp 5
    • Sách Tham Khảo Lớp 6
    • Sách Tham Khảo Lớp 7
    • Sách Tham Khảo Lớp 8
    • Sách Tham Khảo Lớp 9
    • Sách Tham Khảo Lớp 10
    • Sách Tham Khảo Lớp 11
    • Sách Tham Khảo Lớp 12
  • Ôn Thi
    • Thi THPT Quốc Gia
    • Địa Lý
    • Giáo Dục Công Dân
    • Hóa Học
    • Lịch Sử
    • Ngoại Ngữ
    • Ngữ Văn
    • Sinh Học
    • Vật Lý
    • Toán Học
  • Sách Kinh Tế
  • Sách Ngoại Ngữ
    • Tiếng Nhật
    • Tiếng Pháp
    • Tiếng Trung
  • Biểu mẫu
    • Giáo dục – Đào tạo
  • Sách Văn Học
  • Sách Y Học
  • Tài Liệu
    • Thủ tục hành chính
    • Việc làm – Nhân sự
    • Y học
    • Bộ đội – Quốc phòng – Thương binh
    • Doanh nghiệp
    • Giáo dục – Đào tạo
    • Giao thông vận tải
    • Hôn nhân – Gia đình
    • Quyền Dân sự
    • Tin Tức
  • Tâm Lý & Kỹ Năng
  • Giáo Án
  • Học Tập
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Sách Tham Khảo
    • Sách Tham Khảo Lớp 1
    • Sách Tham Khảo Lớp 2
    • Sách Tham Khảo Lớp 3
    • Sách Tham Khảo Lớp 4
    • Sách Tham Khảo Lớp 5
    • Sách Tham Khảo Lớp 6
    • Sách Tham Khảo Lớp 7
    • Sách Tham Khảo Lớp 8
    • Sách Tham Khảo Lớp 9
    • Sách Tham Khảo Lớp 10
    • Sách Tham Khảo Lớp 11
    • Sách Tham Khảo Lớp 12
  • Ôn Thi
    • Thi THPT Quốc Gia
    • Địa Lý
    • Giáo Dục Công Dân
    • Hóa Học
    • Lịch Sử
    • Ngoại Ngữ
    • Ngữ Văn
    • Sinh Học
    • Vật Lý
    • Toán Học
  • Sách Kinh Tế
  • Sách Ngoại Ngữ
    • Tiếng Nhật
    • Tiếng Pháp
    • Tiếng Trung
  • Biểu mẫu
    • Giáo dục – Đào tạo
  • Sách Văn Học
  • Sách Y Học
  • Tài Liệu
    • Thủ tục hành chính
    • Việc làm – Nhân sự
    • Y học
    • Bộ đội – Quốc phòng – Thương binh
    • Doanh nghiệp
    • Giáo dục – Đào tạo
    • Giao thông vận tải
    • Hôn nhân – Gia đình
    • Quyền Dân sự
    • Tin Tức
  • Tâm Lý & Kỹ Năng
No Result
View All Result
Tin Tức Giáo Dục Học Tập Tiny
No Result
View All Result
ADVERTISEMENT

Tâm đường tròn ngoại tiếp tam giác: Lý thuyết & bài tập

Tiny Edu by Tiny Edu
19 Tháng mười một, 2020
in Các Lớp Học, Học Tập, Toán 9
0
Tâm đường tròn ngoại tiếp tam giác: Lý thuyết & bài tập
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Tâm đường tròn ngoại tiếp tam giác: Lý thuyết & bài tập, Mời quý thầy cô, các em học sinh lớp 9 tham khảo tài liệu Tâm đường tròn ngoại tiếp tam giác. Tài liệu tổng

Mời quý thầy cô, các em học sinh lớp 9 tham khảo tài liệu Tâm đường tròn ngoại tiếp tam giác.

Tài liệu tổng hợp toàn bộ kiến thức lý thuyết và các dạng bài tập, phương trình đường tròn, bán kính đường tròn ngoại tiếp tam giác. Qua tài liệu này các em có thêm nhiều tư liệu tham khảo, trau dồi kiến thức để học tốt Toán 9. Vậy sau đây là nội dung chi tiết mời các bạn cùng theo dõi và tải tài liệu tại đây.

Xem Tắt

  • 1 Lý thuyết tâm đường tròn ngoại tiếp tam giác
    • 1.1 1. Khái niệm đường tròn ngoại tiếp tam giác
    • 1.2 2. Cách xác định tâm đường tròn ngoại tiếp tam giác
    • 1.3 3. Phương trình đường tròn ngoại tiếp tam giác
    • 1.4 4. Bán kính đường tròn ngoại tiếp tam giác
  • 2 Bài tập về đường tròn ngoại tiếp tam giác

Lý thuyết tâm đường tròn ngoại tiếp tam giác

1. Khái niệm đường tròn ngoại tiếp tam giác

Đường tròn ngoại tiếp của tam giác là đường tròn đi qua các đi qua tất cả các đỉnh của tam giác đó. Tâm của đường tròn ngoại tiếp là giao điểm của ba đường trung trực của tam giác đó.

2. Cách xác định tâm đường tròn ngoại tiếp tam giác

– Có 2 cách để xác định tâm đường tròn ngoại tiếp tam giác như sau: 

– Cách 1

+ Bước 1: Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC. Ta có IA=IB=IC=R

+ Bước 2: Tọa độ tâm I là nghiệm của hệ phương trình left{begin{matrix} IA^2=IB^2\ IA^2=IC^2 end{matrix}right.

– Cách 2:

+ Bước 1: Viết phương trình đường trung trực của hai cạnh bất kỳ trong tam giác.

+ Bước 2: Tìm giao điểm của hai đường trung trực này, đó chính là tâm của đường tròn ngoại tiếp tam giác.

– Như vậy Tâm của đường tròn ngoại tiếp tam giác ABC cân tại A nằm trên đường cao AH

Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền

3. Phương trình đường tròn ngoại tiếp tam giác

Viết phương trình đường tròn ngoại tiếp tam giác ABC khi biết tọa độ 3 đỉnh.

Để giải được bài toán viết phương trình đường tròn ngoại tiếp tam giác ta thực hiện theo 4 bước sau:

+ Bước 1: Thay tọa độ mỗi đỉnh vào phương trình với ẩn a,b,c (Bởi các đỉnh thuộc đường tròn ngoại tiếp, nên tọa độ các đỉnh thỏa mãn phương trình đường tròn ngoại tiếp cần tìm)

+ Bước 2: Giải hệ phương trình tìm a,b,c

+ Bước 3: Thay giá trị a,b,c tìm được vào phương trình tổng quát ban đầu => phương trình đường tròn ngoại tiếp tam giác cần tìm.

+ Bước 4: Do A,B,C ∈ C nên ta có hệ phương trình:

left{begin{matrix} x_{A}^{2} + y_{A}^{2} – 2ax_{A} – 2by_{A} + c = 0\ x_{B}^{2} + y_{B}^{2} – 2ax_{B} – 2by_{B} + c = 0\ x_{C}^{2} + y_{C}^{2} – 2ax_{C} – 2by_{C} + c = 0 end{matrix}right.

=> Giải hệ phương trình trên ta tìm được a, b, c.

Thay a, b, c vừa tìm được vào phương trình (C) ta có phương trình đường tròn ngoại tiếp tam giác cần tìm.

4. Bán kính đường tròn ngoại tiếp tam giác

Cho tam giác ABC

Gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB. S là diện tích tam giác ABC

Ta có bán kính đường tròn nội tiếp tam giác ABC là:

R=frac{a.b.c}{4S}

Bài tập về đường tròn ngoại tiếp tam giác

Dạng 1: Viết phương trình đường tròn nội tiếp tam giác ABC khi biết tọa độ 3 đỉnh

VD: Viết phương trình đường tròn ngoại tiếp tam giác A, B, C biết A(-1;2) B(6;1) C(-2;5)

Cách giải:

Gọi phương trình đường tròn ngoại tiếp tam giác ABC có dạng:

(C) x^2 + y^2 -2ax -2by +c =0

Do A, B, C cùng thuộc đường tròn nên thay tọa độ A, B, C lần lượt vào phương trình đường tròn (C) ta được hệ phương trình:

left{begin{matrix} 2a-4b+c=-5\ 12a+2b-c=37\ 4a-10b+c=-29 end{matrix}right. Leftrightarrow left{begin{matrix} a=3\ b=5\ c=9 end{matrix}right.

Do đó, Phương trình đường tròn ngoại tiếp tam giác ABC tâm I (3;5) bán kính R = 5 là:

x^2+y^2-6x-10y+9=0 hoặc (x-3)^2+(y-5)^2=25

Dạng 2: Tìm tâm của đường tròn ngoại tiếp khi biết tọa độ ba đỉnh

Ví dụ: Cho tam giác ABC với A(1;2), B(-1;0), C(3;2). Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác ABC

Hướng dẫn cách giải

Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC

underset{IA}{rightarrow} = (1-x;2-y) Rightarrow IA= sqrt{(1-x)^2+(2-y)^2}

underset{IB}{rightarrow} = (-1-x;-y) Rightarrow IB= sqrt{(1-x)^2+y^2}

underset{IC}{rightarrow} = (3-x;2-y) Rightarrow IC= sqrt{(3-x)^2+(2-y)^2}

Vì I là tâm của đường tròn ngoại tiếp tam giác ABC nên ta có:

IA=IB=IC Leftrightarrow left{begin{matrix} IA^2=IB^2\ IA^2=IC^2 end{matrix}right. Leftrightarrow left{begin{matrix} (1-x)^2 + (2-y)^2 = (-1-x)^2 +y^2\ (1-x)^2 + (2-y)^2 = (3-x)^2 + (2-y)^2 end{matrix}right.

Leftrightarrow left{begin{matrix} x+y=1\ x=2 end{matrix}right. Leftrightarrow left{begin{matrix} x=2\ y=-1 end{matrix}right.

Vậy tọa độ tâm của đường tròn ngoại tiếp tam giác ABC là I(2;-1)

Dạng 3: Tìm bán kính đường tròn nội tiếp tam giác

VD: Tam giác ABC có cạnh AB = 3, AC = 7, BC = 8. Tính bán kính đường tròn ngoại tiếp tam giác ABC

Cách giải:

Ta có: p=frac{AB + AC + BC}{2} = frac{3 + 7 + 8}{2} = 9

Áp dụng công thức Herong:

S=sqrt{p(p-AB)(p-AC)(p-BC)} = sqrt{9(9-3)(9-7)(9-8)} = 6sqrt{3}

Bán kính đường tròn ngoại tiếp tam giác ABC:

R=frac{AB.AC.BC}{4S} = frac{3.7.8}{4.6sqrt{3}}

Liên Quan:

So sánh tiếng chim hót trong Chí Phèo và tiếng sáo thổi trong Vợ chồng A Phủ (Dàn ý + 2 mẫu)So sánh tiếng chim hót trong Chí Phèo và tiếng sáo thổi trong Vợ chồng A Phủ (Dàn ý + 2 mẫu) Bài thu hoạch nghị quyết Trung ương 5 khóa XII của Đảng viênBài thu hoạch nghị quyết Trung ương 5 khóa XII của Đảng viên Bảng giá đất Thái Nguyên giai đoạn 2020 – 2024Bảng giá đất Thái Nguyên giai đoạn 2020 – 2024 Văn mẫu lớp 9: Thuyết minh về cây phượng (Dàn ý + 12 mẫu)Văn mẫu lớp 9: Thuyết minh về cây phượng (Dàn ý + 12 mẫu)
Tags: Lý thuyết tâm đường tròn ngoại tiếp tam giácTâm đường tròn ngoại tiếp tam giácTâm đường tròn ngoại tiếp tam giác lớp 9Tâm đường tròn ngoại tiếp tam giác: Lý thuyết & bài tập
ADVERTISEMENT

Bài Viết Mới

Các Lớp Học

Đoạn văn tiếng Anh về dân tộc Tày

by Tiny Edu
23 Tháng mười một, 2024
0

Đoạn văn tiếng Anh về dân tộc Tày, Giới thiệu về dân tộc Tày bằng tiếng Anh mang đến đoạn...

Read more

Bài tập cuối tuần lớp 5 môn Tiếng Việt Cánh diều – Tuần 12 (Nâng cao)

23 Tháng mười một, 2024

Phân tích nghệ thuật xây dựng nhân vật trong tác phẩm Đời thừa

22 Tháng mười một, 2024

Đọc: Tìm việc – Tiếng Việt 5 Cánh diều

22 Tháng mười một, 2024
Viết đoạn văn thể hiện tình cảm, cảm xúc trước câu chuyện Chiếc đồng hồ

Viết đoạn văn thể hiện tình cảm, cảm xúc trước câu chuyện Chiếc đồng hồ

22 Tháng mười một, 2024
Viết thư cho người thân để thăm hỏi và kể về việc học tập, rèn luyện

Viết thư cho người thân để thăm hỏi và kể về việc học tập, rèn luyện

22 Tháng mười một, 2024
Tiếng Anh 7 Unit 4: Looking Back

Tiếng Anh 7 Unit 4: Looking Back

21 Tháng mười một, 2024
Tiếng Anh 7 Unit 4: Project

Tiếng Anh 7 Unit 4: Project

21 Tháng mười một, 2024
Đoạn văn giới thiệu tiết mục hát (múa, đóng vai) mà em (nhóm em) đã hoặc sẽ biểu diễn

Đoạn văn giới thiệu tiết mục hát (múa, đóng vai) mà em (nhóm em) đã hoặc sẽ biểu diễn

21 Tháng mười một, 2024
Tiếng Anh 9 Unit 4: Skills 2

Tiếng Anh 9 Unit 4: Skills 2

21 Tháng mười một, 2024

Bình luận gần đây

  • Tả cây cam mà em yêu thích (Dàn ý + 7 mẫu) - Tài Liệu Miễn Phí trong Tả một loại cây ăn quả mà em thích (Dàn ý + 70 Mẫu)
  • Mẫu vở luyện viết chữ đẹp - Tài Liệu Miễn Phí trong Mẫu giấy 4 ô ly
  • Bộ đề thi thử vào lớp 10 môn tiếng Anh năm 2018 - 2019 - Tài Liệu Miễn Phí trong Bộ đề thi thử vào lớp 10 môn Toán năm 2018 – 2019
  • Đề thi thử THPT Quốc gia năm 2017 môn Địa lý trường THPT Đoàn Thượng, Hải Dương (Lần 1) - Tài Liệu Miễn Phí trong Đề thi thử THPT Quốc gia năm 2017 môn Địa lý trường THPT Lý Thái Tổ, Bắc Ninh (Lần 1)
  • Đoạn văn tiếng Anh về môn thể thao yêu thích (8 mẫu) - Tài Liệu Miễn Phí trong Đoạn văn tiếng Anh về ngày Tết
ADVERTISEMENT
  • Trang chủ
  • Tin Tức
  • Liên hệ
HOME - TRANG CHU

© 2021 Copyright - Quà Tặng Tiny

No Result
View All Result
  • Giáo Án
  • Học Tập
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Sách Tham Khảo
    • Sách Tham Khảo Lớp 1
    • Sách Tham Khảo Lớp 2
    • Sách Tham Khảo Lớp 3
    • Sách Tham Khảo Lớp 4
    • Sách Tham Khảo Lớp 5
    • Sách Tham Khảo Lớp 6
    • Sách Tham Khảo Lớp 7
    • Sách Tham Khảo Lớp 8
    • Sách Tham Khảo Lớp 9
    • Sách Tham Khảo Lớp 10
    • Sách Tham Khảo Lớp 11
    • Sách Tham Khảo Lớp 12
  • Ôn Thi
    • Thi THPT Quốc Gia
    • Địa Lý
    • Giáo Dục Công Dân
    • Hóa Học
    • Lịch Sử
    • Ngoại Ngữ
    • Ngữ Văn
    • Sinh Học
    • Vật Lý
    • Toán Học
  • Sách Kinh Tế
  • Sách Ngoại Ngữ
    • Tiếng Nhật
    • Tiếng Pháp
    • Tiếng Trung
  • Biểu mẫu
    • Giáo dục – Đào tạo
  • Sách Văn Học
  • Sách Y Học
  • Tài Liệu
    • Thủ tục hành chính
    • Việc làm – Nhân sự
    • Y học
    • Bộ đội – Quốc phòng – Thương binh
    • Doanh nghiệp
    • Giáo dục – Đào tạo
    • Giao thông vận tải
    • Hôn nhân – Gia đình
    • Quyền Dân sự
    • Tin Tức
  • Tâm Lý & Kỹ Năng

© 2021 Copyright - Quà Tặng Tiny