ADVERTISEMENT
  • Trang chủ
  • Tin Tức
  • Liên hệ
Chủ Nhật, Tháng mười một 24, 2024
Tin Tức Giáo Dục Học Tập Tiny
No Result
View All Result
  • Giáo Án
  • Học Tập
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Sách Tham Khảo
    • Sách Tham Khảo Lớp 1
    • Sách Tham Khảo Lớp 2
    • Sách Tham Khảo Lớp 3
    • Sách Tham Khảo Lớp 4
    • Sách Tham Khảo Lớp 5
    • Sách Tham Khảo Lớp 6
    • Sách Tham Khảo Lớp 7
    • Sách Tham Khảo Lớp 8
    • Sách Tham Khảo Lớp 9
    • Sách Tham Khảo Lớp 10
    • Sách Tham Khảo Lớp 11
    • Sách Tham Khảo Lớp 12
  • Ôn Thi
    • Thi THPT Quốc Gia
    • Địa Lý
    • Giáo Dục Công Dân
    • Hóa Học
    • Lịch Sử
    • Ngoại Ngữ
    • Ngữ Văn
    • Sinh Học
    • Vật Lý
    • Toán Học
  • Sách Kinh Tế
  • Sách Ngoại Ngữ
    • Tiếng Nhật
    • Tiếng Pháp
    • Tiếng Trung
  • Biểu mẫu
    • Giáo dục – Đào tạo
  • Sách Văn Học
  • Sách Y Học
  • Tài Liệu
    • Thủ tục hành chính
    • Việc làm – Nhân sự
    • Y học
    • Bộ đội – Quốc phòng – Thương binh
    • Doanh nghiệp
    • Giáo dục – Đào tạo
    • Giao thông vận tải
    • Hôn nhân – Gia đình
    • Quyền Dân sự
    • Tin Tức
  • Tâm Lý & Kỹ Năng
  • Giáo Án
  • Học Tập
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Sách Tham Khảo
    • Sách Tham Khảo Lớp 1
    • Sách Tham Khảo Lớp 2
    • Sách Tham Khảo Lớp 3
    • Sách Tham Khảo Lớp 4
    • Sách Tham Khảo Lớp 5
    • Sách Tham Khảo Lớp 6
    • Sách Tham Khảo Lớp 7
    • Sách Tham Khảo Lớp 8
    • Sách Tham Khảo Lớp 9
    • Sách Tham Khảo Lớp 10
    • Sách Tham Khảo Lớp 11
    • Sách Tham Khảo Lớp 12
  • Ôn Thi
    • Thi THPT Quốc Gia
    • Địa Lý
    • Giáo Dục Công Dân
    • Hóa Học
    • Lịch Sử
    • Ngoại Ngữ
    • Ngữ Văn
    • Sinh Học
    • Vật Lý
    • Toán Học
  • Sách Kinh Tế
  • Sách Ngoại Ngữ
    • Tiếng Nhật
    • Tiếng Pháp
    • Tiếng Trung
  • Biểu mẫu
    • Giáo dục – Đào tạo
  • Sách Văn Học
  • Sách Y Học
  • Tài Liệu
    • Thủ tục hành chính
    • Việc làm – Nhân sự
    • Y học
    • Bộ đội – Quốc phòng – Thương binh
    • Doanh nghiệp
    • Giáo dục – Đào tạo
    • Giao thông vận tải
    • Hôn nhân – Gia đình
    • Quyền Dân sự
    • Tin Tức
  • Tâm Lý & Kỹ Năng
No Result
View All Result
Tin Tức Giáo Dục Học Tập Tiny
No Result
View All Result
ADVERTISEMENT

Bài tập toán lớp 6: Số chính phương

quatangtiny.com by quatangtiny.com
28 Tháng mười, 2020
in Các Lớp Học, Học Tập, Toán lớp 6
0
Bài tập toán lớp 6: Số chính phương
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter
ADVERTISEMENT
ADVERTISEMENT

Bài tập toán lớp 6: Số chính phương, Bài tập toán lớp 6: Số chính phương là tài liệu vô cùng bổ ích giúp các em củng cố và nâng cao kiến thức và các dạng bài tập

Nhằm giúp các em học tốt môn Toán lớp 6, Tài Liệu Học Thi xin giới thiệu tài liệu “Bài tập toán lớp 6 – Số chính phương” được chúng tôi tổng hợp chi tiết, chính xác nhất.

Hy vọng với tài liệu này, giúp các em củng cố và nâng cao kiến thức và các dạng bài tập về số chính phương. Sau đây là nội dung chi tiết tài liệu, mời các em cùng tham khảo.

Xem Tắt

  • 1 Bài tập toán lớp 6: Số chính phương
    • 1.1 I. ĐỊNH NGHĨA:
    • 1.2 II. TÍNH CHẤT:
    • 1.3 III. MỘT SỐ DẠNG BÀI TẬP VỀ SỐ CHÍNH PHƯƠNG

Bài tập toán lớp 6: Số chính phương

I. ĐỊNH NGHĨA:

Số chính phương là số bằng bình phương đúng của một số nguyên, với số nguyên bao gồm các số nguyên dương, nguyên âm và số 0. Số chính phương về bản chất là bình phương của một số tự nhiên nào đó.

Hay hiểu một cách khác, số chính phương là một số tự nhiên có căn bậc hai cũng là một số tự nhiên.

Một số chính phương được gọi là số chính phương chẵn nếu như nó là bình phương của một số chẵn. Ngược lại, một số chính phương được gọi là số chính phương lẻ nếu như nó là bình phương của một số lẻ.

II. TÍNH CHẤT:

1. Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9; không thể có chữ số tận cùng bằng 2, 3, 7, 8.

2. Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.

3. Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n + 1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n N).

4. Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n + 1. Không có số chính phương nào có dạng 3n + 2 (n N).

5. Số chính phương tận cùng bằng 1 hoặc 9 thì chữ số hàng chục là chữ số chẵn.

Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2

Số chính phương tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn.

Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

6. Số chính phương chia hết cho 2 thì chia hết cho 4.

Số chính phương chia hết cho 3 thì chia hết cho 9.

Số chính phương chia hết cho 5 thì chia hết cho 25.

Số chính phương chia hết cho 8 thì chia hết cho 16.

III. MỘT SỐ DẠNG BÀI TẬP VỀ SỐ CHÍNH PHƯƠNG

Dạng 1: Chứng minh một số là số chính phương

Bài 1: Chứng minh rằng với mọi số nguyên x, y thì

A=(x+y)(x+2y)(x+3y)(x+4y)+y^4 là số chính phương.

Ta có

A=(x+y)(x+2y)(x+3y)(x+4y)+y^4

  =(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4

Đặt x^{2} + 5xy + 5y^{2} = t (tin Z) thì

A = (t - y^{2})( t + y^{2}) + y^{4} = t^{2} –y^{4} + y^{4} = t^{2} = (x^{2} + 5xy + 5y^{2})^{2}

Vì x, y, zin Z nên x^2in Z, 5xyin Z, 5y^2in Z ⇒ x^2+5xy+5y^2in Z

Vậy A là số chính phương.

Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 left(nin Zright). Ta có

n(n+1)(n+2)(n+3)+1 = n.(n+3(n+1)(n+2)+1

                    = (n^2+3n)(n^2+3n+2)+1 (*)

Đặt n^2+3n=t (tin N) thì

(*) = t (t+2)+1 = t^2+2t+1 = (t+1)^2

   = (n^2+3n+1)^2

Vì nin N nên n^2+3n+1in N Vậy n(n+1)(n+2)(n+3)+1 là số chính phương.

Bài 3: Cho S=1.2.3+2.3.4+3.4.5+...+k(k+1)(k+2)

Chứng minh rằng 4S+1 là số chính phương.

Ta có

k(k+1)(k+2)

= frac{1}{4}k (k+1)(k+2).4

= frac{1}{4}k(k+1)(k+2).[(k+3)-(k-1)]

= frac{1}{4}k(k+1)(k+2)(k+3)-frac{1}{4}k(k+1)(k+2)(k-1)

⇒ S=frac{1}{4}.1.2.3.4-frac{1}{4}.0.1.2.3+frac{1}{4}.2.3.4.5-frac{1}{4}.1.2.3.4+dots+frac{1}{4}k(k+1)(k+2)(k+3)-frac{1}{4}

k(k+1)(k+2)(k-1) = frac{1}{4}k(k+1)(k+2)(k+3)

4S+1=k(k+1)(k+2)(k+3)+1

Theo kết quả bài 2 ⇒ k(k+1)(k+2)(k+3)+1 là số chính phương.

Bài 4: Cho dãy số 49; 4489; 444889; 44448889; …

Dãy số trên được xây dựng bằng cách thêm số 48 vào giữa số đứng trước nó. Chứng minh rằng tất cả các số của dãy trên đều là số chính phương.

Ta có 

=4cdotfrac{10^n-1}{9}cdot10^n+8cdotfrac{10^n-1}{9}+1

=frac{4.10^{2n}-4.10^n+8.10^n-8+9}{9}=frac{4.10^{2n}+4.10^n+1}{9}

=left(frac{2.10^n+1}{3}right)

Ta thấy 2.10^{n} +1=2underbrace{00…0}_{n-1 text{ chữ số }0} 1  có tổng các chữ số chia hết cho 3 nên nó chia hết cho 3

⇒ left(frac{2.10^n+1}{3}right)in Z  hay các số có dạng 44…488…89 là số chính phương.

Bài 5: Chứng minh rằng các số sau đây là số chính phương:

A = underbrace{11…1}_{2ntext{ chữ số }1} + underbrace{44…4}_{ntext{ chữ số }4} + 1

B = underbrace{11…1}_{2ntext{ chữ số }1} + underbrace{11…1}_{n+1text{ chữ số }1} + underbrace{66…6}_{ntext{ chữ số }6} + 8

C = underbrace{44…4}_{2ntext{ chữ số }4} + underbrace{22…2}_{n+1text{ chữ số }2} + underbrace{88…8}_{ntext{ chữ số }8} + 7

Kết quả: A=left(frac{10^n+2}{3}right)^2;  B=left(frac{10^n+8}{3}right)^2; C=left(frac{2.10^n+7}{3}right)^2

Bài 6: Chứng minh rằng các số sau là số chính phương:

a) A = 224underbrace{99…9}_{n-2text{ chữ số }9} 1underbrace{00…0}_{ntext{ chữ số }0} 9

b) B = underbrace{11...1}_{ntext{ chữ số }1} underbrace{55...5}_{n-1text{ chữ số }5}6

a) A=224.10^{2n}+99dots9.10^{n+2}+10^{n+1}+9

=224.10^{2n}+(10^{n-2}-1).10^{n+2}+10^{n+1}+9

=224.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9

=225.10^{2n}-90.10^n+9

=(15.10^n-3)^2

⇒ A là số chính phương.

b) 

= frac{10^n-1}{9}.10^n+5.frac{10^n-1}{9}+1=frac{10^{2n}-10^n+5.10^n-5+9}{9}

=frac{10^{2n}+4.10^n+4}{9}=left(frac{10^n+2}{3}right)^{^2}là số chính phương (điều phải chứng minh)

………………………………………

Download file tài liệu để xem thêm nội dung chi tiết Bài tập toán lớp 6

Liên Quan:

Hướng dẫn giải bài toán lớp 4: Dạng toán thêm, bớt một chữ số ở bên trái một sốHướng dẫn giải bài toán lớp 4: Dạng toán thêm, bớt một chữ số ở bên trái một số Kế hoạch giáo dục lớp 1 sách Cánh diều theo Công văn 2345 (6 môn)Kế hoạch giáo dục lớp 1 sách Cánh diều theo Công văn 2345 (6 môn) Văn mẫu lớp 9: Thuyết minh về cây phượng (Dàn ý + 12 mẫu)Văn mẫu lớp 9: Thuyết minh về cây phượng (Dàn ý + 12 mẫu)
Tags: Bài tập Toán lớp 6Bài tập toán lớp 6: Số chính phươngBài tập trắc nghiệm số chính phươngBài tập về số chính phươngCác bài toán về số chính phương
ADVERTISEMENT

Bài Viết Mới

Các Lớp Học

Đoạn văn tiếng Anh về dân tộc Tày

by Tiny Edu
23 Tháng mười một, 2024
0

Đoạn văn tiếng Anh về dân tộc Tày, Giới thiệu về dân tộc Tày bằng tiếng Anh mang đến đoạn...

Read more

Bài tập cuối tuần lớp 5 môn Tiếng Việt Cánh diều – Tuần 12 (Nâng cao)

23 Tháng mười một, 2024

Phân tích nghệ thuật xây dựng nhân vật trong tác phẩm Đời thừa

22 Tháng mười một, 2024

Đọc: Tìm việc – Tiếng Việt 5 Cánh diều

22 Tháng mười một, 2024
Viết đoạn văn thể hiện tình cảm, cảm xúc trước câu chuyện Chiếc đồng hồ

Viết đoạn văn thể hiện tình cảm, cảm xúc trước câu chuyện Chiếc đồng hồ

22 Tháng mười một, 2024
Viết thư cho người thân để thăm hỏi và kể về việc học tập, rèn luyện

Viết thư cho người thân để thăm hỏi và kể về việc học tập, rèn luyện

22 Tháng mười một, 2024
Tiếng Anh 7 Unit 4: Looking Back

Tiếng Anh 7 Unit 4: Looking Back

21 Tháng mười một, 2024
Tiếng Anh 7 Unit 4: Project

Tiếng Anh 7 Unit 4: Project

21 Tháng mười một, 2024
Đoạn văn giới thiệu tiết mục hát (múa, đóng vai) mà em (nhóm em) đã hoặc sẽ biểu diễn

Đoạn văn giới thiệu tiết mục hát (múa, đóng vai) mà em (nhóm em) đã hoặc sẽ biểu diễn

21 Tháng mười một, 2024
Tiếng Anh 9 Unit 4: Skills 2

Tiếng Anh 9 Unit 4: Skills 2

21 Tháng mười một, 2024

Bình luận gần đây

  • Tả cây cam mà em yêu thích (Dàn ý + 7 mẫu) - Tài Liệu Miễn Phí trong Tả một loại cây ăn quả mà em thích (Dàn ý + 70 Mẫu)
  • Mẫu vở luyện viết chữ đẹp - Tài Liệu Miễn Phí trong Mẫu giấy 4 ô ly
  • Bộ đề thi thử vào lớp 10 môn tiếng Anh năm 2018 - 2019 - Tài Liệu Miễn Phí trong Bộ đề thi thử vào lớp 10 môn Toán năm 2018 – 2019
  • Đề thi thử THPT Quốc gia năm 2017 môn Địa lý trường THPT Đoàn Thượng, Hải Dương (Lần 1) - Tài Liệu Miễn Phí trong Đề thi thử THPT Quốc gia năm 2017 môn Địa lý trường THPT Lý Thái Tổ, Bắc Ninh (Lần 1)
  • Đoạn văn tiếng Anh về môn thể thao yêu thích (8 mẫu) - Tài Liệu Miễn Phí trong Đoạn văn tiếng Anh về ngày Tết
ADVERTISEMENT
  • Trang chủ
  • Tin Tức
  • Liên hệ
HOME - TRANG CHU

© 2021 Copyright - Quà Tặng Tiny

No Result
View All Result
  • Giáo Án
  • Học Tập
    • Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
  • Sách Tham Khảo
    • Sách Tham Khảo Lớp 1
    • Sách Tham Khảo Lớp 2
    • Sách Tham Khảo Lớp 3
    • Sách Tham Khảo Lớp 4
    • Sách Tham Khảo Lớp 5
    • Sách Tham Khảo Lớp 6
    • Sách Tham Khảo Lớp 7
    • Sách Tham Khảo Lớp 8
    • Sách Tham Khảo Lớp 9
    • Sách Tham Khảo Lớp 10
    • Sách Tham Khảo Lớp 11
    • Sách Tham Khảo Lớp 12
  • Ôn Thi
    • Thi THPT Quốc Gia
    • Địa Lý
    • Giáo Dục Công Dân
    • Hóa Học
    • Lịch Sử
    • Ngoại Ngữ
    • Ngữ Văn
    • Sinh Học
    • Vật Lý
    • Toán Học
  • Sách Kinh Tế
  • Sách Ngoại Ngữ
    • Tiếng Nhật
    • Tiếng Pháp
    • Tiếng Trung
  • Biểu mẫu
    • Giáo dục – Đào tạo
  • Sách Văn Học
  • Sách Y Học
  • Tài Liệu
    • Thủ tục hành chính
    • Việc làm – Nhân sự
    • Y học
    • Bộ đội – Quốc phòng – Thương binh
    • Doanh nghiệp
    • Giáo dục – Đào tạo
    • Giao thông vận tải
    • Hôn nhân – Gia đình
    • Quyền Dân sự
    • Tin Tức
  • Tâm Lý & Kỹ Năng

© 2021 Copyright - Quà Tặng Tiny