
Đáp án C
Qua M vẽ đường thẳng song song với AB cắt AC tại P và vẽ đường thẳng song song với CD cắt BD tại Q. Ta có mp (MNPQ) song song với cả AB và CD. Từ đó
Áp dụng tính chất đường trung bình trong tam giác (do M, N là các trung điểm) ta suy ra được MP = MQ = NP = a hay tứ giác MPNQ là hình thoi.
Tính được
Bạn Đang Xem: Cho tứ diện abcd gọi m n lần lượt là trung điểm của bc và ad tính góc giữa ab và cd
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Cho tứ diện ABCD gọi M, N lần lượt là trung điểm của BC và AD.
Biết A B = C D = a , M N = a 3 2 . Tính góc giữa hai đường thẳng AB và CD.
A. 45 °
B. 30 °
C. 60 °
D. 90 °
Các câu hỏi tương tự
Cho tứ diện ABCD có AB = CD = a. Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30 ° .
A. M N = a 2
B. M N = a 3 2
Xem Thêm : Ăn xong đi vệ sinh ngày là bệnh gì
C. M N = a 3 3
D. M N = a 4
Cho tứ diện ABCD có A B = C D = a . Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30 ° .
A. M N = a 2
B. M N = a 3 2
Xem Thêm : Ăn xong đi vệ sinh ngày là bệnh gì
C. M N = a 3 3
D. M N = a 4
Cho tứ diện ABCD có A B = C D = 2 a . Gọi M, N lần lượt là trung điểm của BC, AD và M N = a 3 . Tính góc tạo bởi hai đường thẳng AB và CD
A. 30 °
B. 45 °
C. 60 °
D. 90 °
Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm các cạnh BC,CA và AD (tham khảo hình vẽ bên). Biết M N P ^ = 150 0 . Góc giữa hai đường thẳng AB và CD là
A. 30 °
B. 45 °
C. 90 °
D. 60 °
Cho hình chóp S.ABCD có đáy là hình thang vuông tại B. AB=BC=a, AD=2a. Biết SA vuông góc với đáy (ABCD) và SA=a. Gọi M,N lần lượt là trung điểm SB,CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC)
A. 5 5
Xem Thêm : lee donghyuck là gì – Nghĩa của từ lee donghyuck
B. 55 10
C. 3 5 10
D. 2 5 5
Cho tứ diện đều ABCD cạnh AB=1. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, AD. Tính khoảng cách giữa hai đường thẳng CM và NP.
A. 10 10
B. 10 20
C. 3 10 10
D. 3 10 20
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA vuông góc với mặt đáy (ABCD), SA = a. Gọi M, N lần lượt là trung điểm của SB, CD. Tính cosin của góc giữa đường thẳng MN và (SAC)
A. 2 5
B. 55 10
C. 3 5 10
D. 1 5
Cho tứ diện đều ABCD. Gọi M, N. P lần lượt là trung điểm của các cạnh AB, BC. AD và G là trọng tâm của tam giác BCD. Gọi α là số đo của góc giữa hai đường thẳng MG và NP. Khi đó cosα bằng
A. 2 6
B. 2 4
C. 3 6
D. 3 4
Những câu hỏi liên quan
Cho tứ diện ABCD có AB = CD = 2a. Gọi M, N lần lượt là trung điểm của BC, AD và MN = a 3 . Tính góc tạo bởi hai đường thẳng AB và CD
A. 300
B. 450
C. 600
D. 900
Cho tứ diện ABCD có AB = CD =a. Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30 0
A. MN = a 2
B. MN = a 3 2
C. MN = a 3 3
D. MN = a 4
Cho tứ diện ABCD có AB = CD = a. Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30 ° .
A. M N = a 2
B. M N = a 3 2
Xem Thêm : Ăn xong đi vệ sinh ngày là bệnh gì
C. M N = a 3 3
D. M N = a 4
Cho tứ diện ABCD có A B = C D = a . Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30 ° .
A. M N = a 2
B. M N = a 3 2
Xem Thêm : Ăn xong đi vệ sinh ngày là bệnh gì
C. M N = a 3 3
D. M N = a 4
Cho tứ diện ABCD có A B = C D = 2 a . Gọi M, N lần lượt là trung điểm của BC, AD và M N = a 3 . Tính góc tạo bởi hai đường thẳng AB và CD
A. 30 °
B. 45 °
C. 60 °
D. 90 °
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A’, B’, C’, D’ lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA’, BB’, CC’, DD’ đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A’, B’, C’, G’ lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG’=AA’+BB’+CC’/3
Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm các cạnh BC,CA và AD (tham khảo hình vẽ bên). Biết M N P ^ = 150 0 . Góc giữa hai đường thẳng AB và CD là
A. 30 °
B. 45 °
C. 90 °
D. 60 °
Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm các cạnh BC,CA và AD (tham khảo hình vẽ bên). Biết M N P ^ = 150 o Góc giữa hai đường thẳng AB và CD là
A. 30 o
B. 45 o
C. 90 o
D. 60 o
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của DA, BC. Tính góc giữa hai đường thẳng AB và CD biết AB = CD = 2a; M N = a 3 .
A. 300
B. 450
C. 600
D. 900
Video liên quan
Nguồn: https://quatangtiny.com
Danh mục: Blog