
Cho hàm số y=f(x) có đồ thị như hình vẽ:
Tìm số nghiệm thực phân biệt của phương trình
Bạn Đang Xem: Phương trình f 2 f(x 1 có bao nhiêu nghiệm thực)
f(x) = 1 + m 2
A. 2
B. 1
C. 0
D. 3
Các câu hỏi tương tự
Cho hàm số y =f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + 1 = m có bốn nghiệm thực phân biệt?
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d ( a , b , c , d ∈ ℝ ) có đồ thị như hình vẽ bên
Phương trình f(f(f(f(x))) = 0 có tất cả bao nhiêu nghiệm thực phân biệt?
A. 12
B. 40
C. 41
D. 16
Cho hàm số y = f(x) xác định trên R và có đồ thị như hình vẽ.
Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m – 2019 = 0 có ba nghiệm phân biệt.
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số nghiệm thực phân biệt của phương trình f(f(x)) =0 bằng
A. 7
B. 3
C. 5
D. 9
Cho hàm số y=f(x) liên tục trên ℝ có đồ thị như hình vẽ bên. Phương trình f(f(x)-1 =0 có tất cả bao nhiêu nghiệm thực phân biệt?
A. 6
B. 5
C. 7
D. 4
Cho hàm số y=f(x) liên tục trên ℝ ,f(2)=3 và có đồ thị như hình vẽ bên
Có bao nhiêu số nguyên m ∈ – 20 ; 20 để phương trình có 4 nghiệm thực phân biệt. f ( x + m ) = 3
A. 2
B. 18
C. 4
D. 19
Cho hàm số y= f(x) xác định trên R và có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình
2 f ( x ) – m = 0 có đúng bốn nghiệm phân biệt.
A. 0< m< 8
B.m> 4
C.m< 0 ; m> 8
D. -2< m< 4
Cho hàm số y = f(x) có đồ thị hàm số như hình bên. Phương trình f(x) = 1 có bao nhiêu nghiệm thực phân biệt nhỏ hơn 2?
B. 1
PHƯƠNG PHÁP GHÉP TRỤC TRONG BÀI TOÁN HÀM HỢP
Câu hỏi: Cho hàm số (y = fleft( x right)) có đồ thị được cho như ở hình vẽ bên dưới. Hỏi phương trình (left| {fleft( {{x^3} – 3x + 1} right) – 2} right| = 1) có tất cả bao nhiêu nghiệm thực phân biệt?
A. (8.)
B. (6.)
C. (9.)
D. (11.)
Lời giải
Chọn B
Cách 1: Tự luận truyền thống
– Dựa vào đồ thị hàm số (fleft( x right)), ta có:
(left| {fleft( {{x^3} – 3x + 1} right) – 2} right| = 1 Leftrightarrow left[ begin{array}{l}fleft( {{x^3} – 3x + 1} right) = 1\fleft( {{x^3} – 3x + 1} right) = 3end{array} right. Leftrightarrow left[ begin{array}{l}left[ begin{array}{l}{x^3} – 3x + 1 = b,,left( {b < – 1} right),,,left( 2 right)\{x^3} – 3x + 1 = c,,left( { – 1 < c < 3} right),,,left( 3 right)\{x^3} – 3x + 1 = d,,left( {d > 3} right),,,left( 4 right)end{array} right.\{x^3} – 3x + 1 = a,,left( {a > d} right),,,left( 1 right)end{array} right.)
Dựa vào đồ thị hàm số (y = {x^3} – 3x + 1) (hình vẽ dưới đây)
Ta suy ra: Phương trình (1), (2), (4) mỗi phương trình có 1 nghiệm, phương trình (3) có 3 nghiệm và các nghiệm này đều phân biệt.
Vậy phương trình đã cho có 6 nghiệm phân biệt.
Cách 2: Phương pháp ghép trục
Đặt (u = {x^3} – 3x + 1)
Xem Thêm : Bà hằng vợ dũng lò vôi quê ở đâu
Ta có (u’left( x right) = 3{x^2} – 3); (u’left( x right) = 0 Leftrightarrow x = pm 1).
BBT của hàm số (uleft( x right)):
Phương trình (left| {fleft( {{x^3} – 3x + 1} right) – 2} right| = 1) trở thành: (left| {fleft( u right) – 2} right| = 1 Leftrightarrow left[ begin{array}{l}fleft( u right) = 3\fleft( u right) = 1end{array} right.)
Từ đồ thị hàm số (y = fleft( x right)) và từ bảng biến thiên của hàm số (uleft( x right) = {x^3} – 3x + 1) ta có bảng sau biến thiên của hàm hợp (fleft( {{x^3} – 3x + 1} right) = f(u)) như sau:
Từ bảng trên ta thấy phương trình (fleft( u right) = 1) có (5) nghiệm và phương trình (fleft( u right) = 3) có (1) nghiệm. Vậy phương trình đã cho có (6) nghiệm.
=======
PHƯƠNG PHÁP GHÉP TRỤC TRONG BÀI TOÁN HÀM HỢP
Câu hỏi: Cho hàm số (y = fleft( x right)) liên tục trên (mathbb{R}) có đồ thị như hình vẽ. Phương trình (fleft( {1 – fleft( x right)} right) = 0;left( 1 right)) có tất cả bao nhiêu nghiệm thực phân biệt?
A. (5).
B. (7).
C. (4).
D. (6).
Lời giải
Chọn B
Cách 1: Phương pháp tự luận
(left( 1 right) Leftrightarrow left[ {begin{array}{*{20}{c}}{1 – fleft( x right) = m;( – 2 < m < – 1)}\{1 – fleft( x right) = n(0 < n < 1)}\{1 – fleft( x right) = p(1 < p < 2)}end{array}} right. Leftrightarrow left[ {begin{array}{*{20}{c}}{fleft( x right) = 1 – m}\{fleft( x right) = 1 – n}\{fleft( x right) = 1 – p}end{array}} right.)
+) Do ( – 2 < m < – 1 Rightarrow 2 < 1 – m < 3)
( Rightarrow ) phương trình (fleft( x right) = 1 – m{rm{;}})có 1 nghiệm ({x_1}{rm{.}})
+) Do (0 < n < 1 Rightarrow 0 < 1 – n < 1)
( Rightarrow ) phương trình (fleft( x right) = 1 – n) có 3 nghiệm ({x_2},{x_3},{x_4}).
+) Do (1 < p < 2 Rightarrow – 1 < 1 – p < 0)
( Rightarrow ) phương trình (fleft( x right) = 1 – p{rm{;}})có 3 nghiệm({rm{;}}{x_5},{x_6},{x_7}{rm{.}})
Dễ thấy 7 nghiệm phân biệt. Vậy phương trình đã cho có đúng 7 nghiệm.
Cách 2: Phương pháp ghép trục
Đặt (u = 1 – fleft( x right))
Từ đồ thị của hàm (y = fleft( x right)) ta suy ra BBT của hàm (u = 1 – fleft( x right)) và hàm (fleft( u right)) như sau ( Với (fleft( 4 right) < – 3) và ( – 3 < fleft( 0 right) < 0))
Từ bảng trên ta thấy phương trình (fleft( u right) = 0) có 7 nghiệm phân biệt.
=======
Nguồn: https://quatangtiny.com
Danh mục: Blog