Các trường hợp bằng nhau của hai tam giác, Các trường hợp bằng nhau của hai tam giác Toán lớp 7 là một trong số những tài liệu môn Toán lớp 7 với đầy đủ những kiến
Các trường hợp bằng nhau của hai tam giác Toán lớp 7 là một trong số những tài liệu môn Toán lớp 7 với đầy đủ những kiến thức về các trường hợp mà hai tam giác bằng nhau.
Tài liệu này hỗ trợ tổng hợp những kiến thức có liên quan đến vấn đề và giúp củng cố, bổ sung kiến thức cho học sinh dễ dàng nắm bắt và hoàn thiện kiến thức hình học nhanh chóng và dễ dàng hơn. Sau đây là nội dung chi tiết mời các bạn cùng tham khảo và tải tài liệu tại đây.
Xem Tắt
Các trường hợp bằng nhau của hai tam giác
1. Các trường hợp bằng nhau của tam giác
a) Trường hợp 1: cạnh – cạnh – cạnh: Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
b) Trường hợp 2: cạnh – góc – cạnh: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.
c) Trường hợp 3: góc – cạnh – góc: Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.
2. Ứng dụng
Chúng ta thường vận dụng các trường hợp bằng nhau của tam giác để:
– Chứng minh: hai tam giác bằng nhau, hai đoạn thẳng bằng nhau, hai góc bằng nhau; hai đường thẳng vuông góc; hai đường thẳng song song; ba điểm thẳng hàng; …
– Tính: các độ dài đoạn thẳng; tính số đo góc; tính chu vi; diện tích; …
– So sánh: các độ dài đoạn thẳng; so sánh các góc; …
3. Bài tập
Sau khi nắm rõ các lý thuyết bên trên về những trường hợp bằng nhau của tam giác, mời các bạn cùng làm các bài tập ứng dụng dưới đây:
Bài 1: Cho tam giác ABC; M là trung điểm BC; N là 1 điểm trong tam giác sao cho NB = NC.
Chứng minh: ∆NMB = ∆ NMC.
Bài 2. Cho ABC có AB = AC. Kẻ AE là phân giác của góc BAC (E thuộc BC). Chứng minh rằng: ABE = ACE
Bài 3. Cho tam giác ABC có góc A = 400 , AB = AC. Gọi M là trung điểm của BC. Tính các góc của tam giác AMB và tam giác AMC.
Bài 4. Cho tam giác ABC có AB = AC. D, E thuộc cạnh BC sao cho BD = DE = EC. Biết AD = AE.
a. Chứng minh góc EAB = góc DAC.
b. Gọi M là trung điểm của BC. Chứng minh AM là phân giác của góc DAE.
c. Giả sử góc DAE = 600. Tính các góc còn lại của tam giác DAE.
Bài 5. Cho tam giác ABC có góc A = 900. Vẽ AD ⊥ AB (D, C nằm khác phía đối với AB) và AD = AB. Vẽ AE ⊥ AC (E, B nằm khác phía đối với AC) và AE = AC. Biết DE = BC. Tính góc BAC.
Bài 6. Cho ABC có AB = AC. Kẻ AE là phân giác của góc BAC (E thuộc BC). Chứng minh rằng:
a. ∆ABE = ∆ACE
b. AE là đường trung trực của đoạn thẳng BC.
Bài 7. Cho ABC có AB < AC. Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a. ∆BDF = ∆EDC.
b. BF = EC.
c. F, D, E thẳng hàng.
d. AD ⊥ FC
Bài 8. Cho góc nhọn xOy. Trên tia Ox, lấy 2 điểm A và C. Trên tia Oy lấy 2 điểm B và D sao cho OA = OB; OC = OD. (A nằm giữa O và C; B nằm giữa O và D).
a. Chứng minh ∆OAD = ∆OBC
b. So sánh 2 góc CAD và CBD.
Bài 9. Cho ΔABC vuông ở A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
a. Chứng minh ΔABC = ΔABD
b. Trên tia đối của tia AB, lấy điểm M. Chứng minh ΔMBD = ΔMBC.
Bài 10. Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox, lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên tia Oz, lấy điểm I bất kì. Chứng minh:
a. ΔAOI = ΔBOI.
b. AB ⊥ OI.
Bài 11. Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm E sao cho ME = MA.
a. Chứng minh AC // BE.
b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. Chứng minh 3 điểm I, M, K thẳng hàng.
…………
Mời các bạn tải file tài liệu để xem thêm nội dung chi tiết