Giải Toán 9 Bài 5: Giải bài toán bằng cách lập hệ phương trình, Giải bài tập SGK Toán 9 Tập 2 trang 22 giúp các em học sinh lớp 9 xem gợi ý giải các bài tập của
Giải Toán 9 trang 22 Tập 2 giúp các bạn học sinh tham khảo cách giải, đối chiếu với lời giải hay chính xác phù hợp với năng lực của các bạn lớp 9.
Giải Toán lớp 9 Bài 5: Giải bài toán bằng cách lập hệ phương trình được biên soạn đầy đủ tóm tắt lý thuyết, trả lời các câu hỏi phần bài tập cuối bài trang 22. Qua đó giúp các bạn học sinh có thể so sánh với kết quả mình đã làm, củng cố, bồi dưỡng và kiểm tra vốn kiến thức của bản thân. Vậy sau đây là nội dung chi tiết giải bài tập Toán 9 bài 5 chương 3 tập 2, mời các bạn cùng theo dõi tại đây.
Xem Tắt
Lý thuyết Giải bài toán bằng cách lập hệ phương trình
Để giải bài toán bằng cách lập hệ hai phương trình bậc nhất hai ẩn ta làm theo ba bước sau:
Bước 1: Lập hệ phương trình
– Chọn hai ẩn và đặt điều kiện thích hợp cho chúng
– Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết
– Lập hai phương trình biểu thị mỗi quan hệ giữa các đại lượng.
Bước 2: Giải hệ phương trình nói trên.
Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.
Các dạng toán bằng cách lập hệ phương trình
*Dạng toán dân số, lãi suất, tăng trưởng
+
+ Dân số tỉnh A năm ngoái là a, tỷ lệ gia tăng dân số là x% thì dân số năm nay của tỉnh A là , dân số tỉnh A năm sau là .
*Dạng toán có nội dung hình học – hóa học
+ Ghi nhớ công thức về diện tích hình chữ nhật: S = a.b (với a, b là chiều dài và chiều rộng của hình chữ nhật); diện tích hình tam giác (với a, h lần lượt là độ dài cạnh đáy và đường cao của tam giác); số đường chéo của một đa giác (với n là số cạnh của đa giác).
+ Các công thức hóa học
Giải bài tập toán 9 trang 22 tập 2
Bài 28
Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 1006 và nếu lấy số lớn chia cho số nhỏ thì được thương là 2 và số dư là 124.
Gọi số lớn là x, số nhỏ là y. (Điều kiện: x > y; x, )
Theo giả thiết tổng hai số bằng 1006 nên: x + y = 1006.
Vì số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta được: x = 2y + 124 (với y>124)
Ta có hệ phương trình:
Vậy hai số tự nhiên phải tìm là 712 và 294.
Bài 29
Quýt, cam mười bảy quả tươi
Đem chia cho một trăm người cùng vui.
Chia ba mỗi quả quýt rồi
Còn cam mỗi quả chia mười vừa xinh.
Trăm người, trăm miếng ngọt lành.
Quýt, cam mỗi loại tính rành là bao ?
Gọi số cam là x, số quýt là y. Điều kiện x, y là số nguyên dương.
“Quýt ,cam mười bảy quả tươi” nên tổng số quả cam và quýt là 17 quả, ta có phương trình: x+y=17 (1)
“Chia ba mỗi quả quýt rồi” nghĩa là mỗi quả quýt chia làm ba miếng nên y quả quýt thì có số miếng quýt là: 3y (miếng)
“Còn cam mỗi quả chia mười vừa xinh” nghĩa là 1 quả cam chia làm 10 miếng nên x quả cam thì có số miếng cam là: 10x (miếng)
“Trăm người , trăm miếng ngọt lành” nghĩa là sau khi chia cam và quýt thì ta có tất cả 100 miếng, nên ta có phương trình: 10x+3y=100 (2)
Từ (1) và (2) ta có hệ phương trình:
Vậy có 10 quả quýt và 7 quả cam.
Bài 30
Một ôtô đi từ A và dự định đến B lức 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h thì sẽ đến B chậm 2 giờ so với dự đinh. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 1 giờ so với dự định. Tính độ dài quãng đường AB và thời điểm xuất phát của ôtô tại A.
Gọi x (km) là độ dài quãng đường AB, y (giờ) là thời gian dự định đi từ A để đến B đúng lúc 12 giờ trưa. Điều kiện x > 0, y > 1 (do ôtô đến B sớm hơn 1 giờ).
+) Trường hợp 1:
Xe đi với vận tốc 35 km (h)
Xe đến B chậm hơn 2 giờ nên thời gian đi hết là: y+2 (giờ)
Quãng đường đi được là: 35(y+2) (km)
Vì quãng đường không đổi nên ta có phương trình: x=35(y+2) (1)
+) Trường hợp 2:
Xe đi với vận tốc: 50 km/h
Vì xe đến B sớm hơn 1 giờ nên thời gian đi hết là: y-1 (giờ)
Quãng đường đi được là: 50(y-1) (km)
Vì quãng đường không đổi nên ta có phương trình: x=50(y-1) (2)
Từ (1) và (2) ta có hệ phương trình:
Lấy vế trừ vế của (1) cho (2), ta được:
Vậy quãng đường AB là 350km.
Thời điểm xuất phát của ô tô tại A là: 12 – 8 = 4 giờ.