Phương pháp phân tích đa thức thành nhân tử, Mời các bạn đọc cùng tham khảo tài liệu Phương pháp phân tích đa thức thành nhân tử được Tài Liệu Học Thi đăng tải trong
Phân tích đa thức thành nhân tử là nội dung kiến thức cơ bản làm cơ sở cho các bài học về nhân chia đơn thức. Trong bài viết dưới đây Tài Liệu Học Thi sẽ giới thiệu đến các bạn tài liệu Phương pháp phân tích đa thức thành nhân tử.
Phương pháp phân tích đa thức thành nhân tử hướng dẫn phương pháp giải và các bài luyện tập chuyên đề phân tích đa thức thành nhân tử. Hi vọng với tài liệu này sẽ giúp các bạn có thêm nhiều tài liệu ôn tập giải toán lớp 8 để củng cố và nâng cao các kiến thức đã học. Nội dung chi tiết mời các bạn cùng tham khảo và tải tài liệu tại đây.
Phương pháp phân tích đa thức thành nhân tử
Bản chất : Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.
Ứng dụng :Tính nhanh, giải các bài toán về tìm x, giải phương trình, giải bài toán bằng cách lập phương trình, rút gọn biểu thức.
Dạng 1 : Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
Phương pháp : Giả sử cần phân tích đa thức A + B thành nhân tử, ta đi xác định trong A và B có nhân tử chung C, khi đó.
A + B = C.A1 + C.B1 = C(A1 + B1)
Bài toán 1: Phân tích thành nhân tử.
a. 20x – 5y
b) 4x2y – 8xy2+ 10x2y2
c. 5x(x – 1) – 3x(x – 1)
d. 20x2y – 12x3
e. x(x + y) – 6x – 6y
g. 8x4+ 12x2y4 – 16x3y4
h. 6x3– 9x2
i. 4xy2 + 8xyz
Bài toán 2 : Phân tích đa thức sau thành nhân tử.
a. 3x(x +1) – 5y(x + 1)
b. 3x3(2y – 3z) – 15x(2y – 3z)2
c. 3x(x – 6) – 2(x – 6)
d. 3x(z + 2) + 5(-x – 2)
đ. 4y(x – 1) – (1 – x)
e. 18x2(3 + x) + 3(x + 3)
g. (x – 3)3+ 3 – x
h. 14x2y – 21xy2 + 28x2y2
i. 7x(x – y) – (y – x)
k. 10x(x – y) – 8y(y – x)
Bài toán 3 : Tìm x biết.
a. 4x(x + 1) = 8(x + 1)
b. x(x – 1) – 2(1 – x) = 0
c. 2x(x – 2) – (2 – x)2= 0
d. (x – 3)3+ 3 – x = 0
e. 5x(x – 2) – (2 – x) = 0
g) 5x(x – 2000) – x + 2000 = 0
h) x2– 4x = 0
k) (1 – x)2 – 1 + x = 0
m) x + 6x2 = 0
n) (x + 1) = (x + 1)2
DẠNG 2 : Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
Phương pháp : Biến đổi đa thức bạn đầu về dạng quen thuộc của hằng đẳng thức, sau đó sử dụng hằng đẳng thức để làm xuất hiên nhân tử chung.
Bài toán 1 : Phân tích đa thức thành nhân tử.
a) 4x2– 1
b) 25x2– 0,09
c) 9x2 –
d) (x – y)2– 4
e) 9 – (x – y)2
f) (x2 + 4)2 – 16x2
Bài toán 2 : Phân tích đa thức sau thành nhân tử :
a) x4– y4
b) x2 – 3y2
c) (3x – 2y)2 – (2x – 3y)2
d) 9(x – y)2– 4(x + y)2
e) (4x2 – 4x + 1) – (x + 1)2
f) x3+ 27
g) 27x3– 0,001
h) 125x3 – 1
Bài toán 3 : Phân tích đa thức sau thành nhân tử.
a) x4+ 2x2 + 1
b) 4x2 – 12xy + 9y2
c) -x2– 2xy – y2
d) (x + y)2 – 2(x + y) + 1
e) x3– 3x2+ 3x – 1
g) x3 + 6x2 + 12x + 8
h) x3+ 1 – x2 – x
k) (x + y)3 – x3 – y3
Dạng 3 : Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
Bài toàn 1 : Phân tích đa thức sau thành nhân tử.
a) x2– x – y2 – y
b) x2 – 2xy + y2 – z2
c) 5x – 5y + ax – ay
d) a3– a2x – ay + xy
e) 4x2– y2+ 4x + 1
f) x3 – x + y3 – y
Bài toán 3 : Phân tích các đa thức sau thành nhân tử:
a) x2– y2 – 2x + 2y
b) 2x + 2y – x2 – xy
c) 3a2– 6ab + 3b2 – 12c2
d) x2 – 25 + y2 + 2xy
e) a2+ 2ab + b2 – ac – bc
f) x2 – 2x – 4y2 – 4y
g) x2y – x3– 9y + 9x
h) x2(x -1) + 16(1- x)
Dạng 4 : Phương pháp thêm, bớt một hạng tử.
Ví dụ :
a) y4+ 64 = y4+ 16y2 + 64 – 16y2
= (y2 + 8)2 – (4y)2
= (y2 + 8 – 4y)(y2 + 8 + 4y)
……….
Mời các bạn tải file tài liệu để xem thêm nội dung chi tiết